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Abstract-The paper presents a theory for the study of cracks having a given geometry by taking
into account all types of actions of monotone type like unilateral contact and friction phenomena
between the two crack sides. The arising problems are ofa non-classical nature, due to the interface
conditions expressed in terms of non-differentiable convex superpotentials, The direct B,I.E.M. is
extended appropriately in order to treat this type of problem. The developed method is illustrated
by a numerical example concerning the calculation of stress intensity factors under the unilateral
contact and friction interface conditions.

l. INTRODUCTION

Unilateral contact and friction give rise to highly non-linear problems due to the a priori
unknown free boundaries between contact and non-contact regions. These two phenomena
have been extensively studied for deformable bodies both from the mathematical and the
numerical point of view [cf. Duvaut and Lions (1972), Panagiotopoulos (1985), and the
references given therein]. The inequalities describing unilateral contact and friction cause
the unilateral character of the corresponding mechanical problems, since for these problems
the "principles" of virtual and complementary virtual works hold only in inequality form.
Moreover, the problems are no longer expressed in terms of differential equations, but of
multivalued differential equations, which are equivalent to variational inequalities express­
ing the "principle" of virtual, or ofcomplementary virtual, work. The same situation arises
in the more general case where we have boundary or interface conditions expressed in terms
of the convex superpotentials of Moreau (1968) [cf. also Panagiotopoulos (1985)], i.e.
conditions of monotonic multivalued type. The existing cracks in solids form interfaces
which present unilateral contact effects in the normal direction and frictional effects in the
tangential direction to the interface. This non-classical behaviour of cracks has not as yet
been extensively studied. We mention the works by Comninou (1977) and by Dundurs
and Comninou (1979) which concern especially the frictional contact in cracks where an
unnecessary assumption concerning the contact zone is made [cf. in this respect also
Dubourg (1989), Panagiotopoulos (1975), and Panagiotopoulos and Talaslidis (1980)].
Cracks with the unilateral contact effect have also been recently considered in Zang and
Gudmundson (1990), where an incremental trial and error method is developed based on
the boundary integral equation (B.LE.) method for the determination of the contact and
non-contact regions within the crack. After a few iterations, during which the contact
configuration within the crack is changing, the correct solution is found, if the load
increments are small enough. Unilateral contact problems for cracks including friction have
been studied by the indirect boundary integral equation method (B.LE.M.) by Dubourg
(1989), Dubourg et al. (1988), and Theocaris and Panagiotopoulos (1992). Finally, we also
mention the work of Bower (1987) which uses techniques similar to the techniques of
Dubourg (1989).

All these solutions, except those ofTheocaris and Panagiotopoulos (1992), concentrate
on the crack related questions, as e.g. the arising singularities and their numerical treatment,
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the calculation of the stress intensity factors, etc. In Theocaris and Panagiotopoulos (1992)
we have tried to optimally exploit the inequality nature of the problem according to the
recent numerical approaches to inequality problems. Therefore we have combined the
indirect B.I.E.M. for the crack modelling with the algorithm of Bisbos (1991), which is
convenient for large scale 3D-unilateral contact problems and has already been successfully
tested for the solution of industrial applications in the automobile industry. However, the
use of the indirect B.I.E.M. has certain disadvantages concerning the numerical treatments
of the singularities. Moreover it does not give rise to minimum problems, a fact which does
not permit the method to reach the full automation level of the numerical methods for
inequality problems, which are particularly benefitted by the corresponding developments
in optimization algorithms.

The aim of the present paper is to develop the direct B. I.E.M. for the same problem,
i.e. for a crack with unilateral contact and friction interface conditions, and more generally
for the case of interactions of the two crack sides of monotone multivalued nature. The
presented method here concerns cracks with given length, which do not change during the
loading procedure. The direct B.I.E.M. method applied here is an extension to the crack
problems of the direct B.I.E.M. for problems having unilateral boundary conditions
(Panagiotopoulos and Lazaridis, 1987; Panagiotopoulos, 1987; Antes and Pangiotopoulos,
1992). In these works we have used the duality and the Lagrangian theories of convex
analysis. The problems lead to multivalued boundary integral equations which are equi­
valent to minimum problems formulated along the boundaries with respect to the inequality
constrained reactions or displacements, i.e. all bilatcral degrees of freedom are eliminated
[cf. in this context also Kalker and van Randen (1972) and Bufler (1985)].

Here we have developed another method using Betti's theorem in order to avoid the
use of duality and of Lagrangian analyses, which in the presence of singularities present
serious problems. Indeed there are two reasons why the duality of optimization problems
and the related theory of Lagrangians and saddle points should be avoided in the case of
domains with cuts, as in crack problems. The duality theory, as it is formulated in Ekeland
and Temam (1976) and Panagiotopoulos (1985) assumes that the domain of the problem
n is "appropriately regular" and, in the case of an elastic body, that O"uE L 2(n) and
O"/iJE L 2(n). In the case of cracks we have a non-regular domain and a stress singularity at
the crack tip. In a domain with a cut several of the properties of Sobolev spaces, which is
the classical function space of elastic bodies with regular boundaries, do not hold, as e.g.
the density property of e" ({i)-functions to the Sobolev space H J (n) (Grisvard, 1985), or
need special care, as is the case with the "trace" properties, which are crucial to the crack
contact problem treated here. In this respect many unanswered mathematical questions
have existed until now, even for the simple case of circular domains with one cut, studied
in Grisvard (1985). Note that the general duality theory of Ekeland and Temam (1976)
holds for very general functional spaces and thus one should be able to formulate a duality
theory of variational principles allowing for the stress singularities, under the condition
that the equations of elasticity are well-posed in such a framework. In other words one
should guarantee, using advanced functional analysis, that all the integrals arising in the
application of the duality theory have a meaning for each type of domain and crack. This is
a difficult task which still leaves several unanswered mathematical questions. The situation
becomes more delicate in the case of a slightly more complicated crack and/or domain
geometry. For this reason we have avoided the method of duality and we have applied
Betti's theorem which has a broader validity holding both for the forces being functions or
Dirac measures (unit forces) and for any type ofdomain and crack geometry. The numerical
implementation of the direct B.I. E.M. necessitates the use of some special elements for the
consideration of the arising crack singularities.

2. CRACKS WITH UNILATERAL CONTACT AND FRICTION. OTHER TYPES OF
INTERFACE CONDITIONS

Let us consider a three-dimensional linear elastic body n, which is assumed to occupy
an open bounded subset of [R3 in its undeformed state and has a regular boundary r. We
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Fig. 1. Geometry of the body and the crack interfaces. Possible interface laws.

refer Q to a Cartesian orthogonal coordinate system OXIX2X3 [Fig. I (a)}. r is decomposed
into two mutually disjoint parts r u and r F • It is assumed that on r u (resp. r F) the
displacements (resp. the tractions) are given. Let n = {nJ be the outward unit normal
vector to rand S = {SJ = {O'ijnJ the traction vector on the boundary, where 0' = {O'ij} is
the stress tensor. We denote by U = {uJ the displacement vector, by I' = {I'd the strain
tensor (small strain assumption) and by C = {Cijhk}, i, j, h, k = 1,2,3 Hooke's tensor of
elasticity obeying the well-known symmetry and ellipticity conditions.

On r u we have, for the sake of simplicity, the homogeneous conditions

Ui = 0, (I)

otherwise we have to make the problem homogeneous through a translation. On r F the
conditions

(2)

hold. Within the body Q some formed cracks are given which are denoted by AB. They
may have any geometrical shape and their contour does not change during the loading. We
assume unilateral contact and friction conditions holding at the interface. In order to define
them we consider the components SN and ST {ST,} of the boundary tractions S = {Si}
normally and tangentially to r. They read

(i) if [UN} < 0 then SN = 0 and ST = {ST,} = 0,

(ii) if [UN] = 0 then SN ~ and

(a) if CST] < IlISNI then CUT] = {[UT,]} = 0 and

(3)

(4)

(5)

(b) if ISTI = IlISNI, then exists A~ 0 such that [ur,] = -AST
i
, i = 1,2,3. (6)

Here [UN] and CUT] = {[UT,]} are the relative displacements of the two crack sides. We
consider [UN] as negative if the crack tends to open. Moreover Il is the friction coefficient.
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Note that (3) [resp. (4)] is fulfilled at those points of the crack interface which do not remain
(resp. are) in contact, whereas (5) [resp. (6)] corresponds to the region of adhesive (resp.
of sliding) friction. Concerning now the behaviour of the body we assume that it is a linear
elastic body obeying Hooke's law and that we have a geometrically linear theory. The
problem we want to solve reads:

Problem. Find for a given loadingfthe stress, strain and displacement fields. Moreover
the contact and non-contact regions and the adhesive and sliding friction regions should
be determined within each crack. As it is well known (Panagiotopoulos, 1985; Moreau,
1968; Ekeland and Temam, 1976), (3)-(6) can be put in the following subdifferential form:

if [UN] < 0, then ST = 0 otherwise

(7)

(8)

(9)

Here K = {SN ISN ~ O}, IK = {O if SN EK, 00 otherwise} and i3 denotes the subdifferential
of convex analysis. We recall here that for a convex function 4>: II{n ~ (- 00, + 00], 4> =1= if)

holds by definition that

(10)

where (,) denotes the II{n-inner product, and the set of points {x h i34>(x)} defines a monotone
possibly multivalued graph. For instance, in the II{ l-case this graph is monotone and includes
filled-in vertical finite jumps or infinite jumps to the left and/or to the right. Then 4> is called
a superpotential at the (xT, x) law. The conditions (7)-(9) can be put in the general implicit
form:

(II)

where iN and h are the corresponding superpotentials and i3 is taken with respect to [UN]
and [UT], respectively. With the scope to apply the decoupling iterative method introduced
in Panagiotopoulos (1975) we assume for the present that the normal interaction of the
two crack sides is independent from the tangential interaction. Therefore we shall formulate
the B.I.E.M. assuming that on the crack interfaces the laws [Fig. 1(d)]

(12)

(13)

hold, or equivalently their inverse laws

(l2a)

(13a)

where iN (resp. if) is the conjugate function (Panagiotopoulos, 1985; Moreau, 1968), of iN
(resp. iT)' The equations of the boundary value problem (B.V.P.) read

(Jij,j+ j; = 0 in Q, (14)

(15)

(16)
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where the comma denotes the partial derivation and f = {};} is the volume force vector.
Now let Vbe the linear space of the displacements Vi and let Vobe the set of the kinematically
admissible displacements, Le.

VO={VIV={Vi}' ViE Vi, Vi=O, i=I,2,30nru}. (17)

The work f };Vi dO of the force f = {};} for the displacement V = {Vi} is denoted by (f, v),
and the bilinear form of elasticity by

Let us finally introduce the notation

l(v) = (f, v) + r F'iVi dr.
JrF

(18)

(19)

3. FORMULATION WITH RESPECT TO THE CRACK INTERFACE TRACTIONS

Let L be the admissible space for the tractions S on each crack AB. We denote further
all the crack interfaces UAB by y.

First we assume that S = {8i} is given on y and is equal to Jl = {Jli}' Then the solution
of the arising classical problem satisfies the following problem: Find U = u(Jl) E Vo such
that

a(u, v) - iJli[V;] dr - (f, v) - r Fividr = 0 "Iv E Vo·
r Jrp

(20)

Obviously (20) expresses the principle of virtual work for a structure resulting from the
initial one by eliminating the superpotential constraints on y and by applying the cor­
responding forces Jl = {Ui}' The bilinearity of (20) implies that u is a linear function of Jli'
f and Fi • Thus the solution u of (20) can be written as the sum of u(l) E Vo and U(2) E Vo,

where u(l) and U(2) are solutions of the two variational equalities

and

a(u(l)' v) -l(v) = 0 "Iv E Vo

a(U(2) , v) - iJli[V;] dr = 0 "Iv E Vo,

(21)

(22)

respectively. Here u(l) and U(2) are equilibrium configurations of two classical (bilateral)
structures which are obtained from the initial one by ignoring the superpotential conditions
on y and assuming that on certain parts of the boundary the load is zero.

Thus in (21) the structure is loaded by the forces f on nand F on r F, whereas on y
the loading is zero. Moreover the structure is fixed on r u. In (22) the structure is loaded
by a force Jl = {Ui} on y only and is fixed along ru; the loading in nand rF is zero. The
solutions u( 1) and U(2) exist and are unique, as it is well known from the classical theory of
elasticity. For these bilateral structures the solution u(l) and u(2) can be written in terms of
Green's operator G, which is the same for both structures because in each case the same
type of boundary conditions hold. Thus we have

SAS 30:11-1
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(23)

It remains to determine the unknown distribution ,u = {,u} on y. With respect to the linear
elasticity problem corresponding to (22) Betti's theorem is applied: Assume that A = V.;)·
on y is a force distribution corresponding to a displacement field v(2) E Vo iff = 0 and F = 0
on r F. Then we have

(24)

and we may write that

Now (24) together with (25) implies that for every AE L

i,.1.;(uJdr = iAi[U(llJdr+1Ai[u(2)Jdr

=i Ai[U(l)J dr+ i ,uAV(2),] dr

=i).i[(G(i)]"dr +i,ui[(G(A»)"dr.

Let us introduce now the bilinear form

which is symmetric by Betti's theorem and the linear form

(25)

(26)

(27)

(28)

Assuming now that the tractions J1 = (J1N, J1T) on r Sare related to the displacement field u
through the relations (12), (13) we may write using the definition (10) of the subdifferential
that

J~(-JlM-J~(-ftN)+JT(-Jl~) Ji(-,uT) ~ -[UN](Jl~-ftN)

- [UT),,(Jl~i - ,uT) VJl* E L. (29)

From (29) and (26) we get for A.* := A. that for ,u E L :

where
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J~ ( _ AN) = { ij~ ( - AN) dr if the integral exists,

00 otherwise.

1551

(31)

Analogous is the definition of J~. Thus we are led to the following variational inequality:

Find J1 = {J1N, J1T} E L in order to satisfy

(3(J1, A- J1) - b(A - J1) +J~( - AN) -J~( - J1N) +J~( - AT)

-JH-J1T)~O "IA=(AN,AT)EL. (32)

4. FORMULATION WITH RESPECT TO THE CRACK INTERFACE RELATIVE
DISPLACEMENTS

Let us assume first that Ui = Vi on r u. Finally we are free to take Vi = O.We suppose
that the relative displacements [u] on yare prescribed, let 1: be the set of all symmetric
stress-tensors and let

be the statically admissible set. Here {Ti } denotes the traction on r corresponding to the
stress, = {'u}. Let also {Cijhk} be the inverse tensor to C = {Cijhk } i.e.

(34)

and let

(35)

If the relative displacements [v] on yare considered as given, the "principle" of comp­
lementary virtual work for the body takes the following form: Find u = u([v]) E1: 1 such
that

(36)

Let us now introduce a stress field u0 E 1:], i.e. a stress field satisfying the equations of
equilibrium and the static boundary conditions on r F' We consider the new variables

if = (1-(10 and f = '-'0'

where (1, 'E1:o and

(37)

Thus (36) takes the form; Find (1 = (1(v) E 1:0such as to satisfy

The Green-Gauss theorem implies that

(39)
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A(O"o,f) = 180ijTjjdO

= - rUOifiudO+i. [uo;]Tidr + r uOiTi dr + r uOiTi drIn i Jrr Jru

= i [uo;]T;dr+ LaoiTidr WELo, (40)

where 80 = CO"o and Uo is the displacement field corresponding to 0"0' For the determination
of 0"0 the only condition fulfilled is the condition 0"0 ELI; we are free to choose any other
type of kinematic or static boundary conditions on r u and on 'Y. Thus, we could choose as
the unique solution of a bilateral problem for an elastic body having on r u and on y zero
displacements and subjected to forces II in 0 and Fi on r F' Then (39) takes the form

(41)

The stress ii in (39) is now written as the sum ii( I) + ii(2) where ii(l) and ii(2) are solutions
of the variational equalities respectively. Both (42) and (43) express the "principle" of
complementary virtual work for bilateral elastic bodies

(42)

(43)

resulting from the initial one in the following way: For the first (resp. the second) we
consider the body 0 under the action of "prescribed" relative displacements [v] (resp. zero)
on 'Y, zero forces in 0 and r F and zero (resp. U) displacements on r u. Since these bodies
are linear elastic, ii(l) and ii(2) are uniquely determined. Therefore from (42) and (43) we
obtain that

(44)

where H is the stress-displacement operator of elasticity theory. The bilateral structures
corresponding to (42) and (43) have the same H-operator since they are subjected to the
same type of boundary conditions. Moreover let Ii be the operator NoH where N trans­
forms 0" into the boundary traction S = {S;} = {O"ijnj}. Thus we may write that

S(I) = Ii([v)), S(2) = Ii(U). (45)

We have to determine the unknown relative displacement distribution [v] = {[vd} EA on
'Y; here A denotes the space of [v]. Let [w] = {[wd} E A be another relative displacement
distribution on 'Y corresponding to the stress field i(l) E Lo through (42). Similarly [v] = {[Vi]}
corresponds to ii(l) E Lo. Applying Betti's theorem we can write that

(46)

Analogously to (45) we may write the relation
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1'(1) = H([w]).

Relation (46) implies with (47) and (44) that

i[w];S;dr = i[w];S(I);dr+i[w];S(2);dr

= i[v]J'(I);dr+i[w];S(2);dr

=i[v];[il([w])]; dr +i[wUH(U)]; dr.

Now the bilinear form

£5([v], [w]) = f [H([v])];[w]; dr

and the linear form

J([w]) = - i [H(U)Uw];dr

1553

(47)

(48)

(49)

(50)

are introduced. Note that £5(.,.) is symmetric due to Betti's theorem. Thus (48) implies that

i[w];S; dr = £5([v], [w]) - J([w]).

But (12) and (13) imply, using (10), that

(51)

iN ([w~iD - iN ([VN]) -1T([wf]) -1T([VT]) ~ - [SN([W~UN - [VN])

+ ST,([wf,lN - [VTj ])]

= - [S;([wr] - [v;])]

= -(S;+So;)([wr]-[v;]) 'v'[w*] eA. (52)

Setting w* == w, using the definition

if the integral exists,

otherwise,

(53)

and the analogous definition for JT([VT]), we obtain from (51) and (52) the following
variational formulation: Find [v] = ([VN], [VT]} eA such as to satisfy the variational
inequality

£5([v], [w] - [v]) -d([w] - [v]) +IN([WN]) -IN([VN]) +JT([WT])

-JT([VT]) ~ 0 'v'[w] = {[WN], [WT]} eA. (54)

Here
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d([w]) = d([w]) - f. SOi[W;] dr. (55)

5. MINIMUM PROBLEMS AND THE NUMERICAL TREATMENT

The derived variational inequalities (32) and (54) holding on the crack interface, are
equivalent to minimum problems which are formulated in the sequel. Indeed using the fact
that the bilinear forms {3(.,.) and 15(.,.) are generally non-negative and symmetric, we can
show [ef. Kalker (1988)] the following results:

Proposition 5.1. Every solution of the variational inequality (32) [resp. (54)] solves the
minimum problem

where

and

n(A) = min {n(,u)IJlEL},

(resp. fi([v]) = min {fi([w]) I[w] E A}),

fi([v]) = ~b([v], [v]) -d([v]) +IN([VN]) +JT([v·r]).

(56)

(57)

(58)

(59)

Note here that using (10) we obtain that (32) is equivalent to the multivalued integral
equation on y

(60)

Analogously (54) yields the multivalued integral equation (integral inclusion)

(61)

For the numerical calculation we must solve the arising multivalued RLE.s on y, or
equivalently the corresponding minimum problems by means of an appropriate opti­
mization algorithm. The expression of15(.,.) [resp. {3(., .)] is easily obtained for a discretized
body by applying unit relative displacements (resp. unit forces) to each pair ofcorresponding
nodes of the two crack faces and keeping all other pairs fixed (resp. leaving all other pairs
free). Then the corresponding reactions of the fixed nodes obtained either by the classical
F.E.M. or B.E.M. give the columns of the matrix corresponding to the bilinear 15(., .).
Analogously the relative displacements of the pairs of the free nodes give the columns of
the matrix corresponding to {3(.,.); similarly the vectors d and b are obtained [cf. e.g.
Panagiotopoulos and Lazaridis (1987)] by calculating the reactions of the fixed node pairs
(resp. the relative displacements of the free node pairs) for the prescribed displacements
(resp. for the given loading). Here, in order to take into account the crack singularity we
must use special crack finite elements or boundary elements depending on the method used
for the numerical calculation of the discretized problem. It is worth noting that generally
the symmetry is lost in the discretized problem, with the exception of some special cases.
This is made obvious e.g. for a curvilinear boundary, if one uses the classical B.LE.M. for
the calculation of the discretized bilinear and linear forms of the problem. In the case of
lack of symmetry the variational inequalities are not equivalent to minimum problems.
However, since the symmetry is predicted from Betti's theorem, we can consider the
symmetrized problem, solve the corresponding minimum problem and then make some
corrections by estimating the non-symmetric part and appropriately changing the linear
terms in the minimum problems. This last procedure is in most cases superfluous. As we
have pointed out, the behaviour in the normal direction is independent of the behaviour in
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A B

Fig. 2. The geometrical characteristics of the numerical application (OA = OB = IX, or = 0/1 = a/2).

the tangential direction. However, we have the possibility to study coupled behaviour, i.e.
the case in which instead of (12) and (13) we have the laws (11).

In this case we shall consider the two following subproblems:

(i) - SI:I E 8JN( - [uj,f)] ; S¥- 1»),

(ii) - S¥+ 1) E 8JT ( - [u¥+ 1)] ; Sj,f»), (62)

where in (i) [resp. in (ii)] S¥+ 1) (resp. Sj,f») is given from the previous step. The resulting
algorithm is actually a fixed point algorithm; its convergence is still an open problem in
the presence of crack singularities and if the general superpotentiallaws (62) hold [cf. also
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Fig. 3. Intensity factors K, and Kn and the net opening of the crack.
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Panagiotopoulos (1975), Necas et al. (1980)]. In the case of unilateral contact with friction
along the interfaces we decompose the initial problem into the following two subproblems:

(a) the pure unilateral contact problem with given tangential forces, i.e.

(b) the pure friction problem with prescribed normal forces, i.e.

ifIS!f+I)1 < IlICifl then [u!f+ll] = 0,

ifIS\p+I)1 = IlICifJI then [UV;+ll] = -ASV;+ll, A~ 0, (64)

(65)

The two subproblems (63), (64) and (65) are consecutively solved: At the p-step we solve
(63) with CT taken from the solution of (64), (65) at the p-l step. Then the pure friction
problem is s~lved, i.e. (64), (65) with Cifl taken from the solution of (63) at the p-step. The
proof that this procedure converges to the solution of the initial problem (3)-(6) has been
given in Lazaridis and Panagiotopoulos (1987), in the absence of singularities. In our case
of cracks the proof is still an open problem. We can easily show that for the pure contact
problem (63), (56) [resp. (57)] take the form (Lazaridis and Panagiotopoulos, 1987):

min Of3(A, A) - b(A) IAN ~ 0, AT = C!f- I) on y, AE L},

(resp.)

min Oc5([v], [vD - d([vD I[VN] ~ 0, on y, [v] E A},

whereas for the pure friction problem (64), (65), the form

't--';:--+--+--+---+--T-"--""7i"- 38t

38t

38t

500 [

Fig. 4. Structure with a crack: length 660 mm, height 801.5 mm, crack clearance I mm.

(66)

(67)



Direct boundary integral method 1557

2e+0

..
v
2- ••••••••••••••••••••••-e.s
CI .. + II - 0.003° v.• ..,

iii II - 0.01~o
•• Cl • II - 0.02S':::v
.... <.> -20+0 x II - 0.050o,:l

0 II - 0.075v .....,s c II - 0.100D CI.::::.""" c II - 0.1333CI'"
: .. -4e+O I!:. II - 0.1667
)1 I!:. II - 0.2000

• II = 0.3000

-6e+0
0 10 40

(a)

8e+1

.. JII\
+ II - 0.003v II

~i 60+1 \ iii II - 0.01- .. ..\ • II - 0.025
"V x II =O.OSOS..,
... ° IIJ1l. ¢ II = 0.07S° CICl v

4e+1 II c II - 0.100.... <.>

~
0,:l c )I- 0.1333
v ...

)I =0.1667..,v AD-... CI

\ A )I- 0.2000.........
CI ... • II = 0.30001>0" 2e+1
OIl
)1 \

81aaM,uOe+O
0 10 20 30 40

Interface nodes

(b)

Fig. 5. (a) Friction; (b) normal forces developed on the nodes of the interface for various values of
the friction coefficient. In (b) all diagrams coincide.

(resp.)

(69)

Accordingly, the calculation of the stress and srain fields for problems with cracks subjected
to unilateral frictional interface contact conditions is reduced to the consecutive solution
of two of the above minimization problems, i.e. of (66) or (67) and of (68) or (69).
Note that in the case of lack of symmetry all the above problems (66)-(69) can be formu­
lated as linear complementarity problems (L.c.P.) with non-symmetric matrix [cf. e.g.
Panagiotopoulos (1985)J.

6. APPLICAnONS

As a first application (Fig. 2) we generalize the results of Tsamasphyros and Theocaris
(1983) for cracks having unilateral contact with friction. In order to formulate the quadratic
differentiable problems (66) or (67) and (68) we apply the unit force or relative displacement
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method (cf. Lazaridis and Panagiotopoulos, 1987) with respect to the boundary element
scheme according to boundary element scheme of Blandford et al. (1981). This scheme
includes quadratic boundary elements and for the treatment of the crack singularity bound­
aryelements.

From the same paper we borrow the method for treating the singularities, as well as
the procedure applied for the computation of the stress intensity factors. The matrices of
the obtained minimum problems obviously have all the characteristics of the matrices
resulting in classical B.E.M., i.e. they are fully populated. Due to numerical approximation
they are generally non-symmetric. Note that in the present example the calculation of f3(. , .)
and b can be performed analytically by applying the more accurate method described in
Tsamasphyros and Theocaris (1983), which uses the Muskelishvili integrals.

In our example we have solved for the unilateral contact problem (66) and for the
friction problem (68) after symmetrization. Thus we avoid the numerical solution of (69)
which includes the non-differentiable absolute value term. The resulting quadratic pro­
gramming problems have only a small number of unknowns and have been solved using
the Hildreth and d'Esopo algorithm. Note that if the matrix is non-symmetric then a L.c.P.
arises whose solution must be calculated with an appropriate algorithm for L.c.P.s [see
e.g. Murty (1988)]. In Fig. 3(a) the variation of the stress intensity factors K[, KII is given
for a coefficient of friction J1 = 0.5.

In Fig. 3(b) the length of the net opening of Oy or 0/1 as a percentage q of the crack
length IX is depicted. The opening always begins at 0 and ends towards r or /1. The use of
the classical B.E.M. for the calculation of the matrices of the minimization method presents
some advantages in the present example due to the infinite geometry of the problem
considered.

In the case of a finite structure the classical F.E.M. enriched with crack elements for
the treatment of the singularities, can also be applied, for the determination of the discretized
forms of the multivalued B.I.E.s. This is the case of the second example.
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II
Fig. 6. The stress intensity factors K, and K II as functions of the friction coefficient Jl.
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Fig. 7. Stress 'tmax patterns for four values of the friction coefficient.

In this example we have treated an orthogonal metallic plate sized 0.67 x 0.8015 m
with a thickness of 0.1 m, a Poisson ratio equal to 0.3 and an elasticity modulus equal to
2.1 x 107 t m- 1. The plate contains a central crack as in Fig. 4. The crack is assumed to
have a 1 rom clearance to simulate the situation when this crack is purposefully machined.
The plate was discretized in 325 plane stress elements and 33 special interface elements that
simulate the unilateral contact and friction situation at the interface. The number of DOFs
taking part in the unilateral contact and friction phenomenon is 124. In front of the crack
tip, six singularity elements (12 node collapsed cubic isoparametric elements) take into
account the singularity. The method developed by Bisbos (1990) was used and the program
was run on a Hewlett-Packard 9000/750 computer. We do not intend to present exact data
about computation times, but we can say that the solution of the unilateral part of the
problem took about 5.2 s on the 750 and about 8.7 s on a smaller model of the same series,
namely the 720. These numbers correspond to the CPU-execution time of the algorithm
after the stiffness matrix has been assembled. These times were obtained without having
used profile optimization of the stiffness matrix. To disperse any impressions that seem to
be overwhelming in the literature about unilateral and frictional behaviour of cracks being
numerically tedious, we can cite here the fact that the machine time dedicated to the editing
of the graphical output for the figures at hand, was an order of magnitude more than the
time needed for computations. In fact, the example represented here is considered rather
small for the capabilities of the unilateral contact and friction algorithm as those are only
hardware limited. To give some rough idea of the respective requirements, the algorithm
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requires for n contact node pairs 4n 2 +60n words (double precision). This fact leads for
4000 nodes (i.e. 2000 contact pairs) to a memory requirement of 130 Mbytes. This example
is actually a numerical study of the effect the friction coefficient J1. can have on the shearing
mode (II) stress intensity factor. These factors were computed by an energy method because
other popular methods require the crack surface to be stress free. As one can see in Fig.
5(a) the friction forces rather rapidly converge to a stable pattern along the interface. In
fact the only curves that exhibit a visible discrepancy are those for J1. = 0.003,0.01,0.025
and 0.05, i.e. the very low values of the friction coefficient. The normal forces are not
affected by the friction coefficient and what one sees in Fig. 5(b) is an overlay of 10
coinciding curves. In Fig. 6 the variation of K( and K II against J1. is depicted and one sees a
rather fast stabilization of the stress intensity factors with increasing friction coefficient
values. This evidence supports the discrimination of cracks to "lubricated" and "non­
lubricated". Finally, in Fig. 7, the stress patterns for four values of the friction coefficient
are presented. The stress patterns are quite alike but one can see the continuation of the r­
max contour lines across the interface in the sticking friction areas [to locate these areas
one can observe the normal forces diagrams ofFig. 5(b)] and the dislocation of the respective
stress pattern in the case of the very low friction coefficient, a fact more or less intuitively
expected. What was perhaps beyond intuition was the rather quick stabilization of the stress
intensity factor values with increasing friction coefficient values.
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